УСКОРИТЕЛЬ ЧАСТИЦ: УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ - meaning and definition. What is УСКОРИТЕЛЬ ЧАСТИЦ: УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is УСКОРИТЕЛЬ ЧАСТИЦ: УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ - definition

Ускорители заряженных частиц; Ускоритель частиц; Ускоритель элементарных частиц; Ускоритель заряжённых частиц; Электронный линейный ускоритель; Протонный линейный ускоритель; Ускорители
  • Австралийского синхротрона]]
  • Венгрии]] линейного ускорителя. На нём было получено напряжение 1 МВ в 1952 году
  • ИЯФ СО РАН]], [[Новосибирск]]
  • Вид на ускорительный центр [[Fermilab]], [[США]]. [[Тэватрон]] (кольцо на заднем плане) и кольцо-инжектор
  • Схема устройства линейного ускорителя частиц
  • Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка

УСКОРИТЕЛЬ ЧАСТИЦ: УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ      
К статье УСКОРИТЕЛЬ ЧАСТИЦ
Циклические коллайдеры. Далеко не вся энергия ускоренной частицы идет на осуществление нужной реакции. Значительная ее часть бесполезно теряется в виде отдачи, претерпеваемой частицей мишени в силу закона сохранения импульса. Если налетающая частица имеет энергию Е, а масса частицы покоящейся мишени равна М, то полезная энергия составляет
Таким образом, в экспериментах с покоящейся мишенью на "Теватроне" полезная энергия составляет всего лишь 43 ГэВ.
Стремление использовать в исследованиях частиц как можно более высокие энергии привело к созданию в ЦЕРНе и Лаборатории им. Э.Ферми протон-антипротонных коллайдеров, а также большого числа установок в разных странах со встречными электрон-позитронными пучками. В первом протонном коллайдере соударения протонов и антипротонов с энергиями 26 ГэВ происходили в кольце с длиной окружности 1,6 км (рис. 6). За несколько дней удавалось накопить пучки с током до 50 А.
В настоящее время коллайдером с самой высокой энергией является "Теватрон", на котором проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. Для таких экспериментов необходимы антипротоны, которые можно получить, бомбардируя пучком протонов высокой энергии из "Главного кольца" металлическую мишень. Рождающиеся в этих соударениях антипротоны накапливают в отдельном кольце при энергии 8 ГэВ. Когда накоплено достаточно много антипротонов, их инжектируют в "Главное кольцо", ускоряют до 150 ГэВ и далее инжектируют в "Теватрон". Здесь протоны и антипротоны одновременно ускоряют до полной энергии, а затем осуществляют их соударения. Суммарный импульс сталкивающихся частиц равен нулю, так что вся энергия 2Е оказывается полезной. В случае "Теватрона" она достигает почти 2 ТэВ.
Наибольшая энергия среди электрон-позитронных коллайдеров была достигнута на "Большом электрон-позитронном накопительном кольце" в ЦЕРНе, где энергия сталкивающихся пучков на первом этапе составляла 50 ГэВ на пучок, а затем была увеличена до 100 ГэВ на пучок. В ДЕЗИ сооружен коллайдер ГЕРА, в котором происходят соударения электронов с протонами.
Этот огромный выигрыш в энергии достигается ценой значительного уменьшения вероятности столкновений между частицами встречных пучков низкой плотности. Частота столкновений определяется светимостью, т.е. числом столкновений в секунду, сопровождающихся реакцией данного типа, имеющей определенное сечение. Светимость линейно зависит от энергии и тока пучка и обратно пропорциональна его радиусу. Энергию пучка коллайдера выбирают в соответствии с энергетическим масштабом исследуемых физических процессов.
Для обеспечения наибольшей светимости необходимо добиться максимально возможной плотности пучков в месте их встречи. Поэтому главной технической задачей при проектировании коллайдеров является фокусировка пучков в месте их встречи в пятно очень малых размеров и увеличение тока пучка. Для достижения нужной светимости могут потребоваться токи более 1 А.
Еще одна исключительно сложная техническая проблема связана с необходимостью обеспечивать в камере коллайдера сверхвысокий вакуум. Поскольку столкновения между частицами пучков происходят сравнительно редко, соударения с молекулами остаточного газа могут существенно ослаблять пучки, уменьшая вероятность изучаемых взаимодействий. Кроме того, рассеяние пучков на остаточном газе дает нежелательный фон в детекторе, способный замаскировать изучаемый физический процесс. Вакуум в камере коллайдера должен лежать в пределах 10-9-10-7 Па (10-11-10-9 мм рт. ст.) в зависимости от светимости.
При более низких энергиях можно ускорять более интенсивные пучки электронов, что дает возможность исследовать редкие распады В- и К-мезонов, обусловленные электрослабыми взаимодействиями. Ряд таких установок, иногда называемых "фабриками ароматов", сооружается в настоящее время в США, Японии и Италии. Такие установки имеют два накопительных кольца - для электронов и для позитронов, пересекающихся в одной или двух точках, - областях взаимодействия. В каждом кольце содержится много сгустков частиц при полном токе более 1 А. Энергии пучков выбираются с таким расчетом, чтобы полезная энергия соответствовала резонансу, который распадается на изучаемые короткоживущие частицы - В- или К-мезоны. В основе конструкции этих установок лежат электронный синхротрон и накопительные кольца.
Линейные коллайдеры. Энергии циклических электрон-позитронных коллайдеров ограничиваются интенсивным синхротронным излучением, которое испускают пучки ускоренных частиц (см. ниже). Этого недостатка нет у линейных коллайдеров, в которых синхротронное излучение не сказывается на процессе ускорения. Линейный коллайдер состоит их двух линейных ускорителей на высокие энергии, высокоинтенсивные пучки которых - электронный и позитронный - направлены навстречу друг другу. Пучки встречаются и соударяются только один раз, после чего отводятся в поглотители.
Первым линейным коллайдером является "Стэнфордский линейный коллайдер", использующий Стэнфордский линейный ускоритель длиной 3,2 км и работающий при энергии 50 ГэВ. В системе этого коллайдера сгустки электронов и позитронов ускоряются в одном и том же линейном ускорителе и разделяются по достижении пучками полной энергии. Затем электронные и позитронные сгустки транспортируются по отдельным дугам, форма которых напоминает трубки медицинского стетоскопа, и фокусируются до диаметра около 2 мкм в области взаимодействия.
Новые технологии. Поиски более экономичных методов ускорения привели к созданию новых ускорительных систем и высокочастотных генераторов большой мощности, работающих в диапазоне частот от 10 до 35 ГГц. Светимость электрон-позитронных коллайдеров должна быть исключительно высокой, поскольку сечение процессов убывает как квадрат энергии частиц. Соответственно этому и плотности пучков должны быть чрезвычайно высокими. В линейном коллайдере на энергию порядка 1 ТэВ размеры пучков могут достигать 10 нм, что намного меньше размеров пучка в "Стэнфордском линейном коллайдере" (2 мкм). При столь малых размерах пучков для точного согласования фокусирующих элементов необходимы очень мощные стабильные магниты со сложными электронными автоматическими регуляторами. При прохождении электронного и позитронного пучков друг через друга их электрическое взаимодействие нейтрализуется, а магнитное усиливается. В результате магнитные поля могут достигать 10 000 Тл. Такие гигантские поля способны сильно деформировать пучки и приводить к большому энергетическому разбросу вследствие генерации синхротронного излучения. Эти эффекты наряду с экономическими соображениями, связанными с сооружением все более и более протяженных машин, будут ставить предел энергии, достижимой на электронно-позитронных коллайдерах.
УСКОРИТЕЛЬ ЧАСТИЦ         
установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях - для исследования субъядерных процессов и свойств элементарных частиц (см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ).
Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.
Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт - это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ . 1,60219?10-19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (1012) электронвольт - на крупнейшем в мире ускорителе.
Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами - энергией и интенсивностью пучка частиц.
В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как "обычные", так и криогенные) и сложные системы юстировки и крепления.
См. также:
ускоритель заряженных частиц         
устройство, предназначенное для получения пучков заряженных частиц высоких энергий; в медицинской радиологии используется для лучевой терапии и производства определенных радиоактивных нуклидов.

Wikipedia

Ускоритель заряженных частиц

Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Самые крупные ускорители являются дорогостоящими комплексами, требующими международного сотрудничества. К примеру, Большой адронный коллайдер (БАК) в ЦЕРН, представляющий собой кольцо длиной почти в 27 километров, является результатом работы десятков тысяч учёных из более чем ста стран. БАК сделал возможным столкновения протонов с суммарной энергией 13 ТэВ в системе центра масс налетающих частиц, что является мировым рекордом.

Ускоренные частицы сравнительно низких энергий применяют для получения изображения на экране телевизора или электронного микроскопа, получения рентгеновских лучей (электронно-лучевые трубки), разрушения раковых клеток, уничтожения бактерий. При ускорении же заряженных частиц до энергий свыше 1 мегаэлектронвольт (МэВ) их используют для изучения структуры микрообъектов (например, атомных ядер) и природы фундаментальных сил. В ряде установок, называемых коллайдерами, для увеличения эффективности использования энергии частиц их пучки сталкиваются (встречные пучки).

Работа ускорителя основана на взаимодействии заряженных частиц с электрическим и магнитным полями. Электрическое поле способно совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Конструктивно ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

What is УСКОРИТЕЛЬ ЧАСТИЦ: УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ - meaning and definition